
research papers

76 doi:10.1107/S2053273314023560 Acta Cryst. (2015). A71, 76–81

Acta Crystallographica Section A

Foundations and
Advances

ISSN 2053-2733

Received 17 June 2014

Accepted 27 October 2014

# 2015 International Union of Crystallography

An alternative method for the calculation of joint
probability distributions. Application to the
expectation of the triplet invariant

J. Brosius

Kerkweg 7A, Rotselaar 3110, Belgium. Correspondence e-mail: brosius.jan@gmail.com

This paper presents a completely new method for the calculation of expectations

(and thus joint probability distributions) of structure factors or phase invariants.

As an example, a first approximation of the expectation of the triplet invariant

(up to a constant) is given and a complex number is obtained. Instead of

considering the atomic vector positions or reciprocal vectors as the fundamental

random variables, the method samples over all functions (distributions) with a

given number of atoms and given Patterson function. The aim of this paper was

to explore the feasibility of the method, so the easiest problem was chosen: the

calculation of the expectation value of the triplet invariant in P1. Calculation of

the joint probability distribution of the triplet is not performed here but will be

done in the future.

1. Introduction

Let us consider the definition of the structure factor

Eh ¼
R

dx expð2�ih � xÞ� xð Þ: ð1Þ

In crystallography only the absolute values jEhj are given from

measurements, the phase ’h [Eh ¼ jEhj expði’hÞ] is unde-

termined. One tries to calculate the ’h by statistical methods.

In the past (and up to now) there were only two statistical

approaches:

(i) One considers the function

h�!Eh

and one uses a uniform measure on reciprocal space (the

space of all h). For this we do not need to know the exact

distribution �ðxÞ [as is clear from the definition of Eh (� does

not depend on h)] but use only the additional information that

� is a sum of N ‘peak’ functions,

� ¼
XN

i¼1

1

N1=2
�ri
;

where �ri
ðxÞ � �ðx� riÞ and the ri are the actual but unknown

atomic positions. The ‘peak strength’ 1=N1=2 is determined by

the requirement that the mean of jEhj
2 equals 1 when

sampling uniformly over reciprocal space,

Eh

�� ��2D E
h
¼ 1:

With this setup the random variable Eh becomes a function of

N random variables h! expð2�ih � rkÞ,

Eh ¼
1

N1=2

XN

k¼1

expð2�ih � rkÞ:

There is, however, one problem. In order for the random

variables h! expð2�ih � rkÞ to be independent the following

condition must be satisfied.

There are no relations among the rk of the form

PN
k¼1

nkrk ¼ 0; ð2Þ

where the nk are integer numbers. Theoretically, we may

circumvent this problem by displacing the rk by a very small

amount "k (rk ! rk þ "k). But experimentally there is a

problem: we then need a very large number of experimental

data jEhj (without experimental error) to be able to use this

theoretical assumption and we know that this is not the case.

Because of this condition (2) becomes in reality:

There are no relations among the rk of the form

PN
k¼1

nkrk ’ 0:

One then calculates the joint probability for a set of structure

factors and then one calculates the conditional probability of

the phases given the magnitudes of the structure factors. This

method was proposed by Hauptman and Karle (e.g. Karle &

Hauptman, 1953) and led to some theoretically interesting

algebraic relations, but they did not work in practice.

(ii) One considers the atomic position vectors as the

fundamental random variables, in which case the structure

factors become random variables of the xk:

xkð Þk! Eh ¼
1

N1=2

XN

k¼1

expð2�ih � xkÞ;

where every xk ranges uniformly and independently over the

unit cell (see e.g. Giacovazzo, 1975; Heinerman, 1975; Klug,
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1958). The probability distribution of a set of structure factors

is then calculated and eventually the conditional distributions

of the phases given the magnitudes of the structure factors are

used as the a posteriori distribution of the phases. In his

classical paper Klug (1958) showed that the two approaches

had a drawback: the strength of the derived formulas

depended on inverse powers of N1=2 (N being the number of

atoms). So structures with many atoms give less reliable

formulas than structures with less atoms. Klug also showed

that the algebraic equations that one obtains with the first

statistical approach are less reliable for larger N. Most direct

methods (e.g. Xu & Hauptman, 2004) one uses today are

based on these two statistical approaches. Our approach in the

past was to consider suitably chosen prior distributions for the

atomic position vectors (see Brosius, 2008a,b,c, 2012). Unfor-

tunately when one gives up the independence of the random

position vectors the calculations are more tedious and up to

the approximation used we did not get good results for very

large N. In the second part of Brosius (2012) we used special

constraints on the atomic position vectors and still kept the

independence of the atomic vectors: the results were

promising and the calculation of the joint probability density

(j.p.d.) of structure factors was easy.

2. Sampling over all atomic distributions q

If one looks at the definition of a structure factor (1) there is a

third possibility. Indeed, one may sample over � (uniformly if

possible) and then one can consider the random variables:

��!
R

dx expð2�ih � xÞ� xð Þ ¼ Eh:

What are now the conditions that � should obey? Clearly the

first and most important one is: � must be compatible with the

given Patterson function P; thusR
dy � yð Þ� xþ yð Þ ¼ P xð Þ for all x:

There are also two additional conditions that � can satisfy:

(i) If we can suppose that we have a point particle structure

with strengths 1=N1=2 then

�2 ¼
� 0ð Þ

N1=2
�:

The �ð0Þ factor is necessary if one supposes that the peaks are

delta functions. This gives Sayre’s equation

Uh ¼ EkEh�k

� �
k

if we take �ð0Þ = number of observed structure factors.

(ii) We can apply the conditionR
dx � xð Þ ¼ N1=2

if one knows the total number of atoms in the unit cell.

3. The expectation value of the triplet up to first order

A sampling over all �’s seems, however, an impossible task to

do. Fortunately, a similar problem arises in quantum field

theory. There one uses such a sampling for ‘second quantiza-

tion’. Good introductions to this method can be found in

Weinberg (2005a,b), Chaichian & Demichev (2001), Masujima

(2009) and Siegel (2005). We obtain for the expectation value

of the triplet a complex number: to first order the expectation

of the triplet invariant is

EhEkE�h�k

� �
¼ Cte

"
1

ðQ̂Qh þ iÞðQ̂Qhþk þ iÞ

þ
1

ðQ̂Qk þ iÞðQ̂Qhþk þ iÞ
þ

1

ðQ̂Qh þ iÞðQ̂Qk þ iÞ

#
;

ð3Þ

where

Q̂Qh � R2
h � 1:

The classical methods [see equations (1) and (2) above] give

(only)

EhEkE�h�k

� �
cl ¼

1

N1=2
: ð4Þ

However, we cannot compare blindly formula (4) with

formula (3) since the constant could be equal to 1=N1=2 or

perhaps worse 1=N. But we can do something else: we can

compare ratios. Indeed, let us define Eðh; kÞ by

E h; kð Þ ¼

"
1

ðQ̂Qh þ iÞðQ̂Qhþk þ iÞ
þ

1

ðQ̂Qk þ iÞðQ̂Qhþk þ iÞ

þ
1

ðQ̂Qh þ iÞðQ̂Qk þ iÞ

#
: ð5Þ

Then we can compare the ratio

EhEkE�h�k

� �
Eh0

Ek0
E�h0�k0

� � ¼ CteE h; kð Þ

CteE h0; k0ð Þ
¼
E h; kð Þ

E h0; k0ð Þ
ð6Þ

with the ratio

EhEkE�h�k

� �
cl

Eh0
Ek0

E�h0�k0

� �
cl

¼
1=N1=2

1=N1=2
¼ 1; ð7Þ

where h0 and k0 are some fixed vectors. Now both formulas (6)

and (7) do not depend anymore on N. We shall discuss

equation (6) numerically in the next section.

4. Using methods from quantum field theory

4.1. The setting

Let us now explain how we obtained formula (3). As said

above, we must (at least?) use the constraintR
dy�ðyÞ�ðxþ yÞ ¼ PðxÞ for every x. This can be expressed byQ

x

�
R

dy � yð Þ� xþ yð Þ � P xð Þ
� �

:

That is, the electronic distribution �must satisfy the constraint

½
R

dy �ðyÞ�ðxþ yÞ � PðxÞ� at every x. If for some x this is not

satisfied, then the corresponding delta function is zero and

then
Q

x gives zero for the total product. Next we must impose
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(that is, if we can be sure that we have an almost equal atom

point distribution) the condition

�2 xð Þ ¼
� 0ð Þ

N1=2
� xð Þ

at every point x. The coefficient �ð0Þ is a constant that is

(annoyingly) 1; this is a consequence of the point-atom

structure

� xð Þ ¼
PN
i¼1

� x� rið Þ

and the relations

� x� rið Þ� x� rj

� �
� 0 if i 6¼ j

� x� rið Þ
2
� � 0ð Þ � x� rið Þ:

We cannot do meaningful calculations with 1. Fortunately

NSA [non-standard analysis; see Diener & Reeb (1989),

Nelson (1977, 1987)] comes to our rescue. We shall consider

�ð0Þ as an infinite number and not as 1. Now we can do

calculations! For example, ½�ð0Þ�1=2 now has a meaning: it is an

infinite number but we can compare it with �ð0Þ. Indeed

½�ð0Þ�1=2=�ð0Þ ¼ 1=½�ð0Þ�1=2 and is an infinitesimal number.

Hopefully, these infinite numbers disappear in the final

formula. We will see that this is indeed the case. We regard this

as one indication that we have calculated correctly. [Another

indication is the symmetry of Eðh; kÞ in h, k and hþ k.] We

now impose the condition �2ðxÞ ¼ ½�ð0Þ=N1=2��ðxÞ at every x

by considering an enhanced product

Y
x

� �2 xð Þ �
� 0ð Þ

N1=2
� xð Þ

	 

�

Z
dy � yð Þ� xþ yð Þ � P xð Þ

	 

:

Again this product is equal to zero whenever one (or more)

constraints (delta’s) is zero. Finally, the last constraint does not

depend on x but is the constant delta �ð
R

dx �� N1=2Þ. This

constraint imposes the last general information about �. The

total function that we have to consider is then

Y
x

� �2 xð Þ �
� 0ð Þ

N1=2
� xð Þ

	 

�

Z
dy � yð Þ� xþ yð Þ � P xð Þ

	 
� �

� �

Z
dx � xð Þ � N1=2

	 

:

It remains for us now to calculate a probability.

4.2. The form of the probability distribution over the
sampling space of all q

To do this we want to sample uniformly over the electronic

distributions �. Since we have used all our constraints, we

cannot a priori prefer one disribution �0 over another �. Let us

write then the infinitesimal probability that � (given the

constraint function from above) lies between �ðxÞ and

�ðxÞ þ d�ðxÞ for every x. We express this by

Prob �ð Þd� ¼
Y

x

d� xð Þ � �2 xð Þ �
� 0ð Þ

N1=2
� xð Þ

	 


� �

Z
dy � yð Þ� xþ yð Þ � P xð Þ

	 


� �

Z
dx � xð Þ � N1=2

	 

:

ð8Þ

Finally, we remark that �ðxÞ takes on values between 0 and1

[it is a sum of delta functions
PN

i¼1 �ðx� riÞ!]. So we have to

integrate as follows:
Q

x

R1
0 d�ðxÞ to get the probability over

all �. Thus we have for the total probability

Z
Prob �ð Þ d� ¼ Cte

Y
x

Z1
0

d� xð Þ � �2 xð Þ �
� 0ð Þ

N1=2
� xð Þ

	 


� �

Z
dy � yð Þ� xþ yð Þ � P xð Þ

	 


� �

Z
dx � xð Þ � N1=2

	 

ð9Þ

[where Cte is a normalization constant. This constant can be

calculated by imposing the condition
R

Prob ð�Þ d� ¼ 1]. This

looks fine but there is a problem: our constraints are quadratic

or linear in � and we know that we can easily calculate

expressions of the form

R1
�1

dx exp ax2 þ bxþ cð Þf xð Þ;

whereas expressions of the form

R1
0

dx exp ax2 þ bxþ cð Þf xð Þ

pose a problem. Happily, the constraint �f�2ðxÞ �

½�ð0Þ=N1=2��ðxÞg also eliminates negative �ðxÞ; it also becomes

zero if �ðxÞ becomes negative! So we can say

Z
Prob �ð Þ d� ¼ Cte

Y
x

Z1
�1

d� xð Þ � �2 xð Þ �
� 0ð Þ

N1=2
� xð Þ

	 


� �

Z
dy � yð Þ� xþ yð Þ � P xð Þ

	 


� �

Z
dx � xð Þ � N1=2

	 

:

If we now want to calculate an expectation value of a func-

tion(al) F½�� we have to calculate

research papers

78 J. Brosius � Calculation of joint probability distributions Acta Cryst. (2015). A71, 76–81



F �½ �
� �

�
¼

Z
d�F �½ �Prob �ð Þ

¼ Cte
Y

x

Z1
�1

d� xð Þ � �2 xð Þ �
� 0ð Þ

N1=2
� xð Þ

	 


� �

Z
dy � yð Þ� xþ yð Þ � P xð Þ

	 


� �

Z
dx � xð Þ � N1=2

	 

F � x½ �½ �:

And this will be more pleasingly written as

F �½ �
� �

�
¼

Z
D�F �½ �Prob �ð Þ

¼ Cte

Z
D� xð Þ� �2 xð Þ �

� 0ð Þ

N1=2
� xð Þ

	 


� �

Z
dy � yð Þ� xþ yð Þ � P xð Þ

	 


� �

Z
dx � xð Þ � N1=2

	 

F � x½ �½ �;

and we shall speak of a functional integral over �.

4.3. The essence of the method: Gaussian integration and
functional derivation

As is usual (and here even necessary) we rewrite a delta as a

Fourier integral [thereby introducing new (quadratic) func-

tional integrals as is explained in the calculations (we refer to

the supporting information1)]; and a functional delta �½H½���
will give rise to another functional integral:

� H �½ �½ � /
Q

x

R1
�1

d� xð Þ exp i� xð ÞH � xð Þ½ �½ �

/
R
D� exp i�H �½ �ð Þ:

We shall see in the calculations (see the supporting informa-

tion) that the result after integration over � (when H½�� is

quadratic in �) gives us again a quadratic functional, that is, for

the above example,R
D�� H �½ �½ � /

R
D�

R
D� exp i�H �½ �ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼H1 �½ �

;

where we will obtain a quadratic functional H1½��. So it seems

almost obvious now that we shall have to do with Gaussian

integrals of the formR
D� exp

R
dx dyA x; yð Þ� xð Þ� yð Þ þ

R
dxB xð Þ� xð Þ

� �
F �½ �

where Aðx; yÞ and BðxÞ are independent of � but may depend

functionally on other functions. As we shall explain in the

calculations, the above functional integral is nothing else but

the continuous version of a (discrete) Gaussian integral:

QM
i¼1

R1
�1

dui exp
PM

i¼1;j¼1

Ai;juiuj þ
PN
i¼1

Biui

 !
F ui

� �� �
;

and that can be solved as we shall see in the calculations

[notice that � replaces u and that x replaces i (and y replaces

j)]. What is so interesting about Gaussian integrals is that they

can be expressed as derivations, and derivations ½@=@ujFðfuigÞ�

are much easier than integrals! And as we can foresee now the

continuous version of a discrete derivation is a functional

derivation f½�=��ðxÞ�F½��g. All this is amply explained in the

supporting information.

A lot of this is borrowed from quantum field theory but the

statement of the problem in direct methods (DM) and the use

of infinite numbers like �ð0Þ is our invention (as is also the

iterative use of functional integrals). Such calculations have

not been done before.

As stated before, in the final expression we have unfortu-

nately a normalization constant [our Cte (equation (3)]. We

can calculate this constant in principle. But we are not

really interested in this constant; what we are really

interested in is the joint conditional probability distribution

Pð’h; ’k; ’hþkjRh;Rk;RhþkÞ. We calculated the expectation

hEhEkE�h�ki because it was mathematically the easiest case

(as said before, this paper is a feasibility study of our method).

The j.p.d. Pð’h; ’k; ’hþkjRh;Rk;RhþkÞ will (likely) give a more

complex formula than the (‘classical Von Mises’) expression

P ’h; ’k; ’hþk Rh;Rk;Rhþk

��� �
cl

/ expfRhRkRhþk½cos ’ð Þ< EhEkE�h�k

� �
þ sin ’ð Þ= EhEkE�h�k

� �
�g

(in which case we would indeed be better off with calculating

the normalization constant). Let us then close this section by

stating the problem we really should solve. We must calculate

the expression

P ’h; ’k; ’hþk Rh;Rk;Rhþk

��� �
/
R
D�Prob �ð ÞF �½ �;

where

F �½ � ¼ �
R

dx � xð Þ cos 2�h � xð Þ � Rh cos ’h

� �
� �

R
dx � xð Þ sin 2�h � xð Þ � Rh sin ’h

� �
� similar termsð Þ

Prob (�) = the right-hand side of equation (8). Guided by the

method developed in this paper we shall do this in the future.

5. A comparison of hhhEhEkE�h�kiii with EhEkE�h�k

Let us again rewrite the expression for hEhEkE�h�ki/

hEh0
Ek0

E�h0�k0
i. We obtained [see equation (6)]

EhEkE�h�k

� �
Eh0

Ek0
E�h0�k0

� � ¼ E h; kð Þ

E h0; k0ð Þ

and

E h; kð Þ �

"
1

ðQ̂Qh þ iÞðQ̂Qhþk þ iÞ
þ

1

ðQ̂Qk þ iÞðQ̂Qhþk þ iÞ

þ
1

ðQ̂Qh þ iÞðQ̂Qk þ iÞ

#
;
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where Q̂Qh � R2
h � 1. Now

1

ðQ̂Qh þ iÞ
¼
ðQ̂Qh � iÞ

ðQ̂Q2
h þ 1Þ

¼
Q̂Qh

ðQ̂Q2
h þ 1Þ

� i
1

ðQ̂Q2
h þ 1Þ

:

We shall now test the hypothesis that

EhEkE�h�k

Eh0
Ek0

E�h0�k0

/
EhEkE�h�k

� �
Eh0

Ek0
E�h0�k0

� �
¼
E h; kð Þ

E h0; k0ð Þ
; ð10Þ

thus

EhEkE�h�k /
E h; kð Þ

E h0; k0ð Þ
Eh0

Ek0
E�h0�k0

:

We shall take h0 and k0 to be fixed vectors, such that

jEh0
Ek0

E�h0�k0
j is maximal in the domain jh1j � M0, jh2j � M0,

jh3j � M0 (M0 ¼ 7 being the number of reciprocal vectors

along one axis). We will see (from numerical tests) that

EhEkE�h�k ¼ X þ iYð Þ
E h; kð Þ

E h0; k0ð Þ
Eh0

Ek0
E�h0�k0

; ð11Þ

where X and Y are real random variables, with low variance,

over the space of all couples of reciprocal vectors ðh; kÞ such

that

Rh0
Rk0

Rh0þk0
>RhRkRhþk 	 4

for an equal point atom structure of N atoms. We shall test this

for N = 10 000, 1000 and 100. The model structures are

numerical simulations with randomly placed atomic vectors in

the unit cell (P1).

(1) N = 10 000.

h0 ¼ ð1;�2;�4Þ, k0 ¼ ð�2; 6; 4Þ, Eðh0; k0Þ = 0.1831 �

0.1559i.

Eh0
Ek0

E�h0�k0
¼ �1:18þ 9:749i and Rh0

Rk0
Rh0þk0

¼ 9:82.

EðXÞ ¼ �0:005873, �2ðXÞ ¼ 0:02685; EðYÞ ¼ 0:005557,

�2ðYÞ ¼ 0:02507.

(2) N ¼ 1000

h0 ¼ ð1; 0; 0Þ, k0 ¼ ð�7;�6; 5Þ, Eðh0; k0Þ = 0.2741� 0.6392i.

Eh0
Ek0

E�h0�k0
¼ 3:644þ 3:128i and Rh0

Rk0
Rh0þk0

¼ 4:802.

EðXÞ ¼ �0:06513, �2ðXÞ ¼ 0:1052; EðYÞ ¼ 0:3244,

�2ðYÞ ¼ 0:2134.

(3) N ¼ 1000

h0 ¼ ð0;�6; 5Þ, k0 ¼ ð�7; 6; 2Þ, Eðh0; k0Þ = 0.2783� 0.2539i.

Eh0
Ek0

E�h0�k0
¼ 5:002þ 4:887i and Rh0

Rk0
Rh0þk0

¼ 6:994.

EðXÞ ¼ 0:00315, �2ðXÞ ¼ 0:06493; EðYÞ ¼ �0:03868,

�2ðYÞ ¼ 0:0581.

(4) N ¼ 100

h0 ¼ ð1;�3;�3Þ, k0 ¼ ð6; 3; 6Þ, Eðh0; k0Þ = 0.1433 �

0.07377i.

Eh0
Ek0

E�h0�k0
¼ 6:024� 10:29i and Rh0

Rk0
Rh0þk0

¼ 11:93.

EðXÞ ¼ �0:00392, �2ðXÞ ¼ 0:006904; EðYÞ ¼ 0:04863,

�2ðYÞ ¼ 0:006777.

Let us now do the same thing for the classical formula, e.g.

for the case of 1000 atoms. Proceeding in the same way as

above we have

EhEkE�h�k

� �
cl

Eh0
Ek0

E�h0�k0

� �
cl

/
EhEkE�h�k

Eh0
Ek0

E�h0�k0

¼
1=N1=2

1=N1=2
¼ 1:

Then (N ¼ 1000):

h0 ¼ ð1;�4; 3Þ, k0 ¼ ð�7; 6; 2Þ, Eðh0; k0Þ = 0.2576� 0.4712i.

Eh0
Ek0

E�h0�k0
¼ �1:378þ 5:562i and Rh0

Rk0
Rh0þk0

¼ 5:73.

EðXÞ ¼ �0:0116, �2ðXÞ ¼ 0:1648; EðYÞ ¼ �0:167,

�2 Yð Þ ¼ 0:1074.

EclðXÞ ¼ �0:009683, �2
clðXÞ ¼ 0:307; EclðYÞ ¼ �0:2353,

�2
clðYÞ ¼ 0:219.

As we can see the variances for the classical case are higher

(and in many cases much higher) than in our case.

6. Conclusion, future work and a brief comparison with
current methods

The numerical tests seem to indicate that

EhEkE�h�k ’ xþ iyð Þ
E h; kð Þ

E h0; k0ð Þ
Eh0

Ek0
E�h0�k0

:

However, this relation cannot be used for phase determination

since the values of x, y and Eh0
Ek0

E�h0�k0
are unknown: x and

y do depend on the structure and on h0 and k0 [the variances

�2ðXÞ and �2ðYÞ should also (for phase determination) be a

factor of 10 lower]. Future work should be the calculation of

the joint probability density Pð’h; ’k; ’hþkjRh;Rk;RhþkÞ. This

will reveal a better relation for phase determination. So we

must wait for this density. We expect a more complicated

probability distribution than the classical one,

Pcl ’h; ’k; ’hþk Rh;Rk;Rhþk

��� �
/ exp

2RhRkRhþk

N1=2
cos ’h þ ’k � ’hþk

� �	 

;

and perhaps independent of N. (This will give a formula that

can be used for phase determination.) Then three additional

integrations (besides the ones in this paper) have to be

performed.

What can also be done is to use only the Patterson

constraint R
dy � yð Þ� xþ yð Þ ¼ P xð Þ

and not the two other additional constraints �2ðxÞ ¼

½�ð0Þ=N1=2��ðxÞ and
R

dx �ðxÞ ¼ N1=2. This has the advantage

that we will obtain a formula independent of N and valid for

all structures [e.g. structures with (a lot of) heavy atoms]: one

will only have to feed the diffraction data [without additional

chemical information (knowing e.g. N)] directly into the

probability formula. This case is much easier to calculate (only

two functional integrations must be done). We shall do this

easier case in the near future.
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Another interesting case is the use of Patterson vectors u

[that is those for which PðuÞ is a peak]. Such information can

be obtained easily. We must then include additional

constraints of the formR
dy � yð Þ� uþ yð Þ ¼ P uð Þ:

The advantage of these constraints is that there is but a single

integral (
R

dy).

Another possibility is the use of more extended chemical

information: suppose a large part of the structure is known.

This information might be translated in a known function f ðxÞ,

that will be a sum of peaks of the known positions of the atoms

and then one has to use a constraint of the form

f xð Þ� xð Þ / f xð Þ:

And we observe that this constraint is only linear in �. For a

classical approach of using model structures in DM we refer to

recent work (Burla et al., 2012).

6.1. Brief overview of current methods

(i) All DM formulas use the Patterson indirectly through

the use of conditional probability structures (probability of

the phase invariant given the actual values of the moduli

of structure factors). Well known is the triplet formula

Pð’jRh;Rk;RhþkÞ / expð2RhRkRhþk cos ’=N1=2Þ. The most

probable value for ’ is here 0. This formula is, however, not

able to predict a negative cosine. There is no neighbourhood

(Hauptman) [representation (Giacovazzo)] in the 1=N ‘range’.

In the quintet range (1=NN1=2) we like to mention the stronger

P13 formula (Burla et al., 1994) that is able to predict negative

triplets.

Another well known formula is the quartet invariant with

first and second neighbourhoods (representations) in the 1=N

range. Using this second neighbourhood, one can predict

negative quartets although with small probabilities [for high

N see Peschar & Schenk (1987)] and more recently using

higher representations a stronger formula (Altomare et al.,

1995). However, all these formulas will eventually fail for very

high N.

(ii) Direct space methods (with possibly the help of DM).

(a) Shake and bake [using repeatedly the tangent formula

(= derived algebraically not probabilistically), DM (triplet and

quartet formulas) and direct space (using fast Fourier trans-

form and peak selection)] (Chang et al., 1997; Langs &

Hauptman, 2011), which is able to solve ab initio structures for

N ’ 1000.

A probabilistic formula for a correct tangent formula will be

submitted by us very soon to Acta Crystallographica Section A;

it will use the probabilistic approach explained in Brosius

(1979) and it will not be adversely dependent on N. It is based

on the use of the a priori distribution pðx; f’qgqÞ /

½
P

q Rq expði’q � 2�iq � xÞ�2 and is mathematically rigorous.

(b) SIR2011 (using more a direct space approach than a DM

one) is able to solve ab initio structures with N around 1000

(Burla et al., 2013).

(c) Patterson deconvolution (superposition) (Caliandro et

al., 2013) (direct space).

A rigorous probabilistic treatment based on an a priori

Patterson superposition distribution (Brosius, 1979) can be

given that does not depend adversely on N.

I would especially like to thank the referees for their careful

reading of the manuscript and their comments. I am also

grateful to Professor H. Schenk for all his work and patience.
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